
AD- 251 925EONS ON SOFTWARE ENGINEERI[NG__ AD-A251 925 ososo, =

OPTIMISTIC EXECUTION AND CHECKPOINT COMPARISON

FOR ERROR RECOVERY IN PARALLEL AND DISTRIBUTED SYSTEMS'

Junsheng Long and W. Kent Fuchs Jacob A. Abraham

Coordinated Science Laboratory Computer Engineering Research Center
1101 W. Springfield Ave. 2201 Donley Dr., Suite 395

University of Illinois University of Texas at Austin
Urbana, IL 61801 Austin, TX 78758

Principal contact: Junsheng Long

long@crhc.uiuc.edu
S'-- (217) 333-8294D FAX: (217) 244-5686E .E'' 92-16433

J-U N , 4 May 8, 1992

Abstract

This paper describes a checkpoint comparison and optimistic execution technique for error
detection and recovery in distributed and parallel systems. The approach is based on lookahead
execution and rollback validation. It uses replicated tasks executing on different processors for
forward recovery and checkpoint comparison for error detection. Two schemes derived from this
strategy are analyzed and compared with triplication and voting, and with two common backward
recovery methods. The impact of checkpoint time, checkpoint validation time. and process restart
time is also examined. An implementation on a Sun NFS network with six benchmark programs
is presented. Compared with classic checkpointing and rollback techniques, our strategy provides
rapid recovery and requires, on average, fewer processors than standard replication and voting
methods. This strategy is useful in systems where spare processors are available at the time of
recovery.

Key Words: fault tolerant computing, checkpointing, error detection, and error re-
covery.

[This docurnent has been approved
fo public release and sale; its
distribution is unlimited.

'This research is supported in part by the National Aeronautics and Space Administration (NASA) under Contract
NAG ' r.: and in part by the Department of the Navv and managed by the Office of the Chief of Naval Research
tinder Contract N00014-91-J-1283.

Earlier versions of portions of this work were presented at ICPP-90 and the IFIP Working Conference on Dependable
Computing for Critical Applications, 1991.

I. INTRODUCTION

Considerable research has been devoted to checkpoint-based backward recovery schemes [1-51.

There have also been techniques proposed w.hich combine replication with voting and checkpoint

rollback recovery [6-8]. The RAFT algorithms replicate the computation on two processors to

achieve error detection and rollback recovery [6,7]. If the results produced by the replicated tasks

do not match, the task is executed on other processors until a pair of matched results is found.

Checkpoint-based backward recovery has two drawbacks: an execution time penalty due to check-

pointing and rollback, and the problem of determining if a checkpoint is error free. Although placing

checkpoints optimally can reduce the execution time penalty to some extent, the computation lost

by rollback is inherent [2-5]. One approach to validating a checkpoint is to validate the system state

via concurrent error detection or system diagnosis, before a checkpoint is taken [9, 10]. Another is

to simply keep a series of consecutive checkpoints and perform multiple rollbacks when necessary

[11]. In contrast to backward recovery, forward recovery attempts to reduce the lost computation

by manipulating some portion of the current state to produce an error-free new state. However,

forward recovery generally depends on accurate damage assessment, a correction mechanism, and

sometimes massive redundancy (e.g., NMR) [1, 12].

In this paper, we present a checkpoint-based error detection and optimistic recovery strategy

for parallel and distributed systems. This strategy requires neither application-specific error cor-

rection nor massive static NMR for error masking to achieve forward recovery. It uses checkpoint

comparison for checkpoint validation and optimistic execution for forward recovery.

The following section describes our recovery strategy; the subsequent section discusses the

performance evaluation of the recovery schemes derived from our strategy. Section IV presents an

experimental evaluation with a distributed implementation on a Sun NFS-based network.

2

II. RECOVERY WITH OPTIMISTIC EXECUTION USING CHECKPOINTS

A. Computation and System Model

The system considered consists of homogeneous processing elements connected to each other

and to secondary storage by a network. The processing element can be either a computer node in

a distributed system or a CPU node in a multiprocessor system. The network can be an LAN for

a distributed system or a general connection network for a parallel system. We assume that the

necessary checkpoints are retained on a reliable second . storage and are accessible through the

interconnection network.

A task is an independent computation and it can be a group of related subtasks. A task is

divided into a series of sequential subcomputation sessions by checkpoints. A process is the task

running on a processing element, A process can be replicated on different processors.

A checkpoint consists of two types of information: the current process state for process restart

and the test information for process state validation. The state and test information may or may

not be separate entities within the checkpoint. If the checkpoint is the complete run-time process

image, the test information can be the image itself or the signature of the image. Checkpoint

comparison is used to detect erroneous system state or validate the checkpoint. This implies that

the probabilities of the two checkpoints being identical as a result of one or two erroneous processes

are negligible.

This paper only deals with the faults that cause an error in a process and result in an erroneous

checkpoint. Faults in the processor interconnection network or the secondary storage may not be

detectable nor recoverable in our approach. We also assume a rel',,,e (voter) process that performs

checkpoint comparisons. . ,-'des

Statement A per telecom
Dr. Clifford Lau * Distd;
ONR/Code 1114
Arlington, VA 22217-5000 NWW 6/2392 -

:3

Erroneou checkpoint

.. Checkpoint-.------
Interval i Lookahead execution (incorrect)-2 ---------->

Fault - Correct checkint

Normal execution

U ILookahead execution (correct)

Committed Rollback
checkpoint Validation

U Diagnosis checkpoint

Figure 1. Lookahead Execution and Rollback Validation.

B. Lookahead Execution and Rollback Validation

Two essential features of our recovery strategy are lookahead execution to reduce the compu-

tation loss due to recovery and rollback validation to diagnose the correctly scheduled lookahead.

These concepts are illustrated in Figure 1. As in the RAFT scheme, a task is replicated and

executed concurrently on two different processors [6, 7]. At the end of one computation session,

two checkpoints are produced by the replicated process pair. A voter process compares the newly

generated but uncommitted checkpoints to determine if the process state is error free. If the two

checkpoints are identical, the system state is valid. Either of the checkpoints can be committed for

the past computation session and the process pair advances to the next session.

If the uncommitted checkpoints disagree, then the checkpoints contain an erroneous state.

Instead of rolling back, two identical task processes are started from the uncommitted checkpoints

on two additional processors. This optimistic scheduling is called lookahead (optimistic) execution.

Meanwhile. another process rolls back to the last committed checkpoint on a fifth processor. After

4

a checkpoint interval., A, a diagnosis checkpoint is produced by the rollback (validation) process.

This checkpoint is compared to the two disagreeing (uncommitted) checkpoints. If there is a match,

the error-free checkpoint is identified and committed. The process pair that was executed ahead

from the disagreeing erroneous checkpoint and the rollback validation process are terminated. In

this strategy, the two additionally scheduled lookaheads make it possible not to roll back the whole

system when there is an error during lookahead executions. In this case, the lookahead pair from

the new verified checkpoint is treated as the normal pair. This pair can start a new round of

lookahead and rollback validation without rolling back the whole system.

Compared to the static redundancy of three processors for TMR, this strategy uses two proces-

sors for the common error-free situation and a dynamic redundancy of five for the rare occurrence

of an error. The potential for forward recovery lies in the fact that there should be at least one

correct process (thus, one valid checkpoint) during the normal run, since the lookahead execution

from this valid checkpoint advances the computation without rollback. However, rollback may not

be avoidable when the diagnosis checkpoint does not agree with either of the two uncommitted

disagreeing checkpoints, since all optimistic executions may be incorrect.

C. Recovery Design Considerations

With respect to lookahead and rollback scheduling, there are four critical parameters in de-

signing a specific recovery scheme based on the approach described. The first is the number of

replicated processes in the normal run, which we call base (redundancy) size. The larger the base

size. tli rnr'! potential there' is fer r"O ,wld t[ecu '4'1,V. sillce it is Iikoly to hi v an error-free check-

point for successful lookaheads. The second is the validation size or the number of processes used

for rollback validation; the third is the validation depth or the number of retries of the rollback

5

validation process if a rollback validation fails to diagnose the disagreeing checkpoint,. We can use

either a larger validation size or a larger validation depth to increase the diagnosis success rate. In

the case of a larger validation depth, the rollback validation success rate is increased by using time

redundancy. The fourth is the lookahead size or the number of lookahead processes scheduled.

A forward recovery scheme is recursive if its validation depth is unlimited. In this case, the

processes executed ahead can spawn their children of lookahead and validation tasks unboundedly,

as the validation retries increase. If multiple failures during a checkpoint period are rare, then it is

unlikely that recursive validation and lookahead process spawning will be required. A nonrecursive

scheme is an approximation of its recursive counterpart. In fact, it is the corresponding recursive

scheme with all validation re-tries greater than the validation depth truncated. If the processor

resource is limited, limiting the lookaheads scheduled (lookahead size < base size) leads to graceful

performance degradation [13]. At one extreme, the recovery scheme degenerates into a normal

rollback scheme such as RAFT if the lookahead size is zero [6,7].

D. Limitations

Our approach is useful in systems where extra spare processors are available at the time

of recovery. Other limitations to our approach are the requirement that an error results in an

erroneous checkpoint, and the implementation requirement that the checkpoints generated from

different processors for the same computation should be identical if there is no error.

III. PERFORMANCE EVALUATION

In our analytical and experimental evaluation, three types of overhead are considered: check-

point time (tk), process restart time (t,) and checkpoint testing time (It). For purposes of analysis.

6

constant checkpoint intervals and overheads are used. Each processor has a constant probability

of failure, pf, during one computation session (A + tk) with or without restart and checkpoint

test. This assumption implies two requirements. The first is a Poisson distribution for the failure

distribution, while the second is tt < A + tk and t, < A + tk since the probability of failure over

[0,A + tk] is required to be equal to that over [0,A + tk + tt + tr]. The typical test time tt and

restart time t, are in the order of a fraction of a second and the checkpoint interval A on the order

of minutes or hours.

In order to consider the impact of the centralized file server that handles checkpoint files, we

assume that tk and tr are approximately n-fold, when the n processes access their checkpoint files

at the same time. This assumption enables us to study the impact of a file server by adjusting t k

and t,, since both restart time t, and checkpoint time tk will be increased due to the file accesses

to a single server. The increase in t, and t k may not be proportional to the number of processes

that access the same file. However, a checkpoint file usually contains many blocks. A fair server

policy guarantees that the n processes finish their access to the checkpoint file at approximately

the same time. We also assume that checkpoint comparison is performed by a voter process on a

host that can access the file system locally, and thus tt is not changed.

A. Performance Metrics

The performance measures we examine in this paper are:

* Relative Execution Time, Re: the ratio of the expected execution time (T,) over the error-free

execution time (TO). This measure normalizes the effect of the execution time for different

computations. If R, is close to one. the execution time will be close to the error-free execution

time.

7

* Number of Processors, NP: the average number of processors used by the system or - foT N,(t)dt.

It describes the processor redundancy required by a recovery scheme. The maximal instan-

taneous Np(t) reflects the maximal processor requirement.

* Number of Checkpoints, N,: the average number of checkpoints stored in the system or

T-fo N,(t)dt. The maximal instantaneous N,(t) reflects the maximal storage requirement.

B. Alternative Recovery Schemes

We examine two alternative schemes derived from our proposed recovery strategy and three

other common schemes. These five recovery schemes are characterized in Table 1. Both DMR-

F-1 and DMR-F-2 are nonrecursive schemes derived from our recovery strategy. Their rollback

validation is limited to one try with one or two rollback validation processes. The TMR-F scheme

is the common TMR forward recovery scheme using error masking and majority voting. The DMR-

B-1 and DMR-B-2 schemes are recursive rollback schemes modified from the RAFT algorithms [6, 7].

They use two processes for the normal execution. If the checkpoints match after checkpointing, the

execution advances to the next session. If there is no match, one or two validation processes roll

back repeatedly until a matched checkpoint pair is obtained. These two recursive rollback schemes

have the best performance among all their nonrecursive approximations.

C. Discussions

The derived analytical model for DMR-F-I and DMR-F-2 is presented in Appendix A. The

results are summarized in Tables 2 and 3 (the symbol, fs, denoted for the corresponding cases with

a centralized file server). The analysis for TMR-F. DMR-B-1 and DMR-B-2 is very similar [13].

Generally, Re, NP or N, can be expressed in terms of the relative overhead factors as

Table 1. Five Schemes Compared.

DMR-F-1: a nonrecursive forward recovery scheme with base size = 2, validation
size = 1, validation depth = I and lookahead size = 2.

DMR-F-2: a nonrecursive forward recovery scheme with a base size = 2 valida-
tion size = 2, validation depth = 1 and lookahead size = 2.

TMR-F: a triple module redundancy forward recovery scheme (base size = 3)
with validation size = 0, validation depth = 0 and lookahead size =

0.
DMR-B-1: a recursive backward recovery scheme with base size = 2, validation

size = 1, validation depth = oo and lookahead size = 0.

DMR-B-2: a recursive backward recovery scheme with base size = 2, validation
size = 2, validation depth = oc and lookahead size = 0.

m = c+a+13 t tt 6
,X~ + tk + t'A

where c is a constant, m E {Re, N, Np} and t. is either 2 tk or 3 tk. The constant c is the error-free

part of the performance measure, while a is the performance degradation due to rollbacks in the

schemes we considered. The smaller a is for a recovery scheme, the more effective it is in terms

of reducing the execution time degradation. In this paper, a is called the coefficient of overhead

due to rollback. This rollback overhead can not be eliminated and depends only on the failure

probability, PI" The expression c + a represents the inherent performance of a particular scheme.

The factors of 13, y, and b are the overhead coefficients for process restart, checkpoint comparison

and checkpointing.

For R, the overhead coefficients, na, 3. -y and 6 are related only to pj. For Np and No, the

coefficients also include a factor of --. Nornially, the relative overheads are very small, and we can

approximate R, with the zero-overhead R_. This approximation. in fact, gives the upper bound

for t, .3. -f and 6 in NP and N0, since the presence of t,. t t and t k increases R. Therefore, Np and

N, are approximately a linear function of overhead factors. The overhead coefficients represent the

9

Table 2. Analytical Evaluation Summary: DMR-F-1.

Pt
2pf(1 - P)2

Pr 2p2 (1 - pf) +p

T n(A + tk) (+ pr + ftr PI+2Pr + n -2.5p1+ 3P

Re 1 + 2 + P+2 p t.._ + 2.spi+3p. t,
lpr I-Pr A+tk 1-pr A+tk

N, 1 + 2 2 2 +- - t + 26 2
PI+

+ s P
P T(1-p,.)R (1-pr)Re A+tk (1-p,-)Re +tk

max(N) 8
N P2 + 3 P +_ Rr = _ + 3 P '+ P ' tr ___ 1.5pj+ 2p t,. _

2 T I+P + IP-p-)Re (-PT)R A+tk (1-Pr)Re -A+tk

max(NP) 5

Re(fs) 1 + 2pT + P,+5/ 3Pr 3tr + 2.5p,+3pr . + +. 3t

pT I-Pr A+2tk + -Pr A+2tk l-Pr A+2tk

2 Pt+P + 2 PL+P- 3t..
(_Pr)Re(f s) (-pr)Re.(f3) A+2t, k

+2 6 .2 5PI+SPr t, 3t,
Tl- R(fs) A+2tk --)RfsA+t

NP(fs)
2+ 3 P+P-Re + (1-)Re)t +

+3____+
_r

t, +3 P,+P- 3tk
(-P)Re A+2tk 0l-P-)R, A+2tk

contribution of their corresponding overhead factors to the performance degradation. The larger

the coefficient for an overhead factor, the more important this overhead factor is with respect to

performance degradation.

For the noncentralized file server situation, 6 is zero. The checkpoint time, tk, does not appear

as an overhead factor because an error-free execution time that includes checkpoint time. n(A + tk),

is used as the base for our performance measures. The overhead coefficient for the checkpoint time

is c + a if the checkpoint-less error-f'ee execution time is used as the base for the performance

measures. For example, R, can be redefined as the ratio of the expected execution time over the

checkpointless error-free execution time, T instead of , That is,nA A+t h

10

Table 3. Analytical Evaluation Summary: DMR-F-2.

p32p(1 _ f)

Pr ~2p3 (1-_pf)+ p2(2(1 -pf)pf+ p2)

Te+ nPz++tk)(1+Pi,+ + + ntt3.5p,+5p,+5Pr

R, + P,2r+ pi+ 2p,+ 2p, tr- + 3.5p1+5p,+5p t,
1 -pr 1;,,- a+tk 1-P.- a+tk

max(N,) 9 (-,). At

NP 2+ + P + eP + .1PI +P,+Pr tr +4 2.~5 +55.P t,-

max(Np) 6j

Re(fs) 1+ p,-2Pr + PI+5/3p,+5/3Pr 3t, +

I1P -P.- A+2tk

+3.5pL2 5+55p. A+t + PI+Ps+P- 3+tk

NAs 1 + P + ? 2U() 1 p,)R() A+2fk

(I -p,)R (fs) 41+2tk (1-p,-)Re(fs) A+2tk

Np~f) 2+4Pi+P+ + 4 P+Ps+P- 3r +N~(fs)(+ (-P.-)R, (I-p,)Re A +2tk

+4 25pj5.5,___ L, t, 4 e + +E
3

tk
(1-P,-)Re A+2tk (-rR A+2tk

11

T, T, A + tk 'A + tk tk tt_ _ __ __-__

nA A + tk A A A A A

Checkpointing overhead is inherent in any checkpoint-based scheme since checkpoint time is always

included in the execution whether a fault occurs or not. To minimize the impact of this overhead,

the optimal checkpoint interval or frequency should be utilized.

The performance degradation due to a centra'ized file server is reflected in two ways. The first

is the increased overhead caused by the file access serialization. For example, an approximate factor

of 3 appears for the restart overhead term, 'r. in R,(fs). The second is the nonzero overhead'1+tk

coefficient for checkpoint time (6) because of the extra checkpointing activities by the lookahead

and rollback validation processes during recovery.

D. Comparison

In order to compare the five schemes we described above, Re, NP, and N, are plotted in

Figures 2, 3 and 4. The solid curves depict the zero-overhead case (i.e., the inherent performance.

c + a), whereas the dotted curves depict the case with 5% overheads (e.g., tk, tr and tt are -5% of

A + tk, respectively).

In Figure 2, the expected execution times for DNIR-F-I and DMR-F-2 are comparable to that

for TMR-F. In fact, their execution time is nearly the same as the error-free execution time. The

execution t:ies for the rollback schemes (DMR-B-1 and DMR-B-2) can be as high as 20 percent

more than the error-free execution tithe. The increase in R, with p1 shows that rollback is still

possible in TMR-F, DMR-F-I and DMI-F-2. even though these -chemes can perform forward

recovery. For DMR-F-l. R, is larger than that for DMIR-F-2 because there are more rollback

validation failures in [X:R-F-I.

12

Exec. 008-

)fobabuityof FaltUr, Pt

Figure 2. ComparlSou.Rltv
xctO ie

2 .8BS O x D I -F -

0 W-

0 002 ProbabilItY Ot Failure,

Fgure 3. (Oiup rls""' N itnb e Of PrOCessOrs.

1.6 13

+ DMR-F-1 - Zero overhead

* DMR-F-2 •.. 5 % Overhead

1 Th14-F ..' ..
1 .4 - 0 D R -8 1 .." .. : ,

Number of 0 'MR2:

Checkpoints

1.2-

0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, p,

Figure 4. Comparison: Number of Checkpoints.

The average number of processors used for DMR-F-1 and DMR-F-2 is less than that of TMR

(Figure 3). Using more than three processors dynamically for the infrequent error situation enables

DMR-F-1 and DMR-F-2 to reduce the overall processor redundancy. As expected, the rollback

schemes, DMR-B-1 and DMR-B-2, use on average fewer processors than the others. For DMR-B-1,

NP decreases with p1 because only one processor is used during recovery.

The number of checkpoints increases with p1 for all schemes except TMR-F. For TMR-F.

N, is close to one. For DMIR-F-1 and DM/R-F-2, N, is slightly higher than that for DMR-B-1

and DMR-B-2. It seems contradictory to the fact that more checkpoints would be accumulated

during recovery for DMR-B-1 and DMR-B-2. However, DMR-B-I and DMR-B-2 do have a smaller

N, than DMR-F-1 and DMR-F-2 because they have a longer execution time than DMR-F-1 and

DMR-F-2 due to rollbacks. The difference in N, may be insignificant, since most modern systems

usually have a large secondary storage for the checkpoint files.

As expected. the presence of overhcadl i icreases R,~. Both D MIR- F- I andl DNMR- F-2 still have

14

an execution time close to the error-free execution time (within 5% for DMR-F-2 and 10% for DMR-

F-i). For DMR-F-1 and DMR-F-2, NP is increased less than 1% because the extra processors are

used only during recovery. Np for TMR-F and DMR-B-2 are constant, since they always use three

and two processors, respectively, during both normal execution and recovery.

E. Overhead Impact on Performance

The impact of the checkpoint overhead is determined by c + a and depicted in Figures 2, 3

and 4 as the zero-overhead curves. The impact of checkpoint overhead on Re for DMR-F-1, DMR-

F-2 and TMR-F is smaller than that for DMR-B-1 and DMR-B-2. This is because the rollback

reduction in DMR-F-1, DMR-F-2 and TMR-F leads to fewer checkpointing sessions in computation

(Figure 2). For DMR-F-1 and DMR-F-2, NP is more sensitive to the checkpoint overhead than that

for TMR-F, DMR-B-1 and DMR-B-2 as indicated by -a positive slope in Figure 3. The static

redundancy employed in TMR-F and DMVIR-B-2 is reflected by the flat slopes in Figure 3. Except

for TMR-F, the sensitivity of N to the checkpoint overhead is reflected by the relatively steep

slopes in Figure 4.

Figures 5, 6 and 7 compare the overhead coefficients for restart time and checkpoint compari-

son time. The solid curves represent the impact of t,; the dotted ones depict the impact of tt. The

impact of the comparison time t, is more than twice that of the restart time t ,. This suggests that

any decrease in comparison time will result in a bigger gain in performance improvement than will

an equal decrease in restart time. In Figure 5, t, and tt affect R, for DMR-F-2 and DMR-B-2 more

than R, for other schemes; TMR-F is insensitive to both t, and tt. For DMR-F-1 and DMR-F-2, t,

and tt affect Np more than for other schemes because both schemes employ extra processors during

recovery (Figure 6). As indicated by the large slopes of the dotted curves in Figure 7, the number

15

0.7- +OMR-F-1 - Restart Tirm

0.5 x DhMl.F-2 ... Comparison Tirm

Overhead0TIF

Coefficients h.B1... 11
0.3-.. *

......

0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, pf

Figure 5. Overhead Impact on Execution Time.

2-
+ DhIR-F-i - Restart Tim.*

*DAAR-F-2 ... Coipison Time

1.5- c TMR-F

Overhead (3 DAIR-8-1
Coefficients

for Np 1 A DMR-82

0 0.02 0.04 0A0680.

Probability of Failure, pt

Figure 6. Overhead Impact on Number of Processors.

3.5 .__16

+ DMR-F-1 - Restart Tim

x DMR-F-2 ... ComparisonTim

o TMR-F .

2 - DMR-8-1 •"..: '

Overhead 2 "" .'"
Coefficients A OMR.B-2 . ,

for N. 1.5-

....

0 0.02 0.04 0.0 0.08 0.1

Probability of Failure, pf

Figure 7. Overhead Impact on Number of Checkpoints.

of checkpoints for all schemes except TMR-F is sensitive to the checkpoint comparison overhead.

The impact of a centralized file server is depicted in Figure 8 for a case with 5 % overheads.

The solid curves are for the centralized server case, while the dotted ones for the noncentral server

case. The impact of a single file server for TMR-F, DMR-B-1, and DMR-B-2 is not as significant

as that for DMR-F-1 and DMR-F-2, since there are additional checkpoint operations and restarts

by the lookahead and rollback validation processes during recovery for DMR-F-1 and DMR-F-2.

F. Checkpoint Placement

The formulas for Te in Tables 2 and 3 can be used to minimize the impact of checkpoint

time on execution time by selecting the proper checkpoint interval or frequency. Figure 9 shows the

expected execution time under different failure rates and overhead costs for DMR-F-1. The optimal

checkpoint frequency can be obtained by either numerical or graphical means, given a failure rate,

task computation time, and overhead costs such as checkpoint time, restart time, and comparison

1.25 17

+ DMR-F.1 - Central file server

1.2- x DMR-F-2 ... Noncentral file server P "

o TMR-F P..

1.1 - 0 DMR-8.-1 .P" .

Relative
Exec. Time A DMR.B.2

Re ..
1.1-

...................... .
1 X y " ... *.

0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, pf

Figure 8. Impact of a Central File Server on Execution Time.

time.

Note in Figure 9 that for a low checkpointing overhead, the execution time curve near the

bottom is rather flat. This suggests that an exact checkpoint interval is not necessary since a few

additional checkpoints still give a near optimal solution. For small failure rates, the checkpoint

interval is usually large or checkpoint frequency is small. This observation agrees with the previous

studies on optimal checkpoint placement for other recovery schemes [2-5].

IV. EXPERIMENTAL IMPLEMENTATION EVALUATION

A. Distributed Implementation

In this section, we discuss our DMR-F-1 implementation for a distributed system consisting

of a Sun 3/280 server and a pool of 12 Sun 3/50 diskless workstations. The server provides a Sun

NFS transparent access to remote file systems under SunOS 4.0. A voter task for the checkpoint

comparison and recovery initiation runs on this server. All checkpoints are kept by the server. The

18

Basic Execution Time = 1000 units
X = failure rate

1300 -1-3 tk = checkpoint overhead

Expected
Exec. Time

T, ,=5 10-4

1150- tk=5

.. X= tO-ltkl2.

1000 I I I I I
0 5 10 15 20 25 30

Checkpoint Frequency

Figure 9. Optimal Checkpoint Placement.

Sun 3/50 workstations are used as the processing units. This setting makes it possible to evaluate

the impact of the centralized file server. Our implementations are entirely user level with no kernel

modifications required.

A checkpoint used in our implementation is a snapshot of a process run-time image at the

time of checkpointing. There has been considerable research concerning checkpoint construction

in UNIX [14-17]. Smith implemented a mechanism for checkpoint construction in UNIX for the

purpose of process migration [14]. His checkpoint is an executable file generated by a checkpoint

operation. It contains the text segment, the data segment, as well as the stack segment of the

process state. The stack segment is treated as a part of the data segment. The processor state

(e.g., registers) is saved by a setjmp() system call. The restart of the checkpointed process is simply

the reexecution of this executable file on another processor. Li and Fuchs developed a checkpointing

scheme for their compiler-assisted checkpoint insertion techniques [16]. Their checkpoint is a data

file that contains the data segment and partial stack segment of the checkpointed process. The

checkpoint is intended for use in the same shell process on the same machine. Our implementation

19

uses a checkpoint structure similar to that of Li and Fuchs. In addition to having the complete stack

and data segments, our checkpoint also contains a segment for the file I/O output data during that

checkpoint interval. The omission of the text segment is possible because the original executable

file is already available through NFS. There is no need to transfer the executable file to perform a

remote restart.

Two problems have to be overcome for any recovery scheme that uses checkpoint comparison:

the remote restartability and comparability of a checkpoint. That is, a task must be able to be

restarted from a checkpoint produced on other nodes, and a checkpoint produced on a node must be

identical to any checkpoint from any other nodes if both are correct and for the same computation.

The former is required for process replication (lookahead execution), while the latter is needed for

checkpoint validation.

The uniform virtual memory layout of UNIX in homogeneous machines provides the basis for

the restart of a checkpointed process on a remote node. However, some user process information

is usually kept in the kernel for efficiency. A checkpoint without this information may not be

restartable even for the same kernel. One example is the file I/O information in the file descriptor

table in the kernel. When a process terminates or aborts, this information is cleared by the kernel.

Restarting a process from a checkpoint without reestablishing this information in another kernel

makes a local file descriptor in a user program meaningless.

To make a checkpoint remotely restartable, the user information kept in the kernel has to

be extracted during checkpointing and reestablished in the new kernel at restart [14, 15]. A set of

library routines was developed for file I/0 o)erations. The library keeps extra data as a part of

the checkpoint, such as file name. access mode. and file position. associated with the opened files.

During checkpointing, all file buffers are flushed for opened files, and the file positions are updated

20

and stored in the checkpoint. During a restart, those files are reopened and repositioned according

to the previously saved information in the checkpoint. In this manner, the attributes of file I/O

can be saved and restored easily across the network. However, the checkpoint may still not be

restartable even with the complete information of a user process state, since some state attributes

are kernel-dependent. They cannot be saved and carried across kernels (i.e., nodes) in a sensible

fashion [14,15]. Examples are process group, signal received, the value of real-time clock, and any

children that the process may have spawned with fork(). Similar to CONDOR and Smith, our

current implementation assumes that for restartability a program may not use or depend on those

kernel-dependent attributes that have partial information internal to the operating system other

than file I/0.

The kernel-dependent attributes also cause checkpoints to be incomparable, even if these

checkpoints are all valid. For example, the value of the real-time clock for different kernels may

be different, since these clocks are seldom synchronized. The valid checkpoints from the same

execution on different nodes may not be the same if the program has these attributes as a part of

its memory space. For those kernel-dependent attributes, we enforce the following restrictions to

make the checkpoint comparable: we can eliminate the use of variables to store such kernel-specific

attributes, or carefully place them in local variables (on the stack) whose scope does not include

a checkpoint operation, or clear these variables before checkpointing. Fortunately, most numerical

applications seldom use kernel-dependent values except file I/O, and thus meet the restrictions we

put on checkpoint restartability and comparability.

21

B. Experiments

B.1. Benchmark Programs

Four scientific and two SPEC benchmark programs with different checkpoint sizes were se-

lected for our experiments [18]. Program convlv is an FFT algorithm that calculates the convo-

lution of 1024 signals with one response, and ludcmp is the LU decomposition algorithm that is

applied to 100 randomly generated matrices with uniformly distributed sizefrom 50 to 60; rkf is the

Runge-Kutta- ehlberg method for solving the ordinary differential equation y' = x + y, y(O) = 2

with step size 0.25 and error tolerance 5 x 10- ; rsimp is the revised Simplex method for solving

the linear optimization problem for the BRANDY set from the Argonne National Laboratory. The

detailed description of these four benchmark programs can be found in [16]. The matrix300 and

nasa7 are two SPEC benchmarks: matrix300 performs various matrix multiplications, includ-

ing transposes using Linpack routines SGE.NIV. SGEMM and SAXPY, on matrices of order 300,

whereas nasa7 is a modified version of NASA Ames FORTRAN kernels consisting of seven heavily

floating point intensive modules. The original version uses a large memory and generates heavy

paging activities on the diskless workstations that lead to a long execution time (44 hours). We

have changed some array dimensions so that paging would not delay our experiments (250 K data

and about 2 hours of execution).

The checkpoint operations were inserted into these benchmark programs manually. Table 4

summarizes the characteristics for each program with respect to checkpoint size, checkpoint time,

checkpoint interval and execution time. Checkpoint size is divided into data segment, stack segment

and the file output during the checkpoint interval. Programs rsimp and matrix300 give examples

of a large checkpoint. lost applliualtions we ex miied have clieckpoints of size (64-350 K). The

stack size is small in all six programs. This is expected for scientific applications in which the calling

22

Table 4. Overhead Measurements.

Programs # ckp ckp.size ckp-time crop.time ckp-interval exec-time
Name (per run) (data/stack/file) (std. dev.) (std. dev.) (std. dev.) (w/o. ckp)

(in bytes) (in sec) (in sec) (in see) (in sec)
convlv 128 75950 0.2172 0.1608 13.917 1809.22

(66196/1554/8200) (0.3411) (8.6302e-3) (0.90787) (1781.42)

ludcmp 50 121510 0.2408 0.2030 20.626 1043.38
(71708/1550/48252) (3.428e-2) (1.8224e-2) (2.1092) (1031.34)

matrix300 150 2219446 5.8714 8.6157 239.777 37092.88
(2217652/1794/0) (0.6949) (0.2338) (26.729) (3620630)

nasa7 49 351614 0.7672 0.9660 131.46 6611.44
(349788/1826/0) (0.1347) (5.683e-2) (28.22) (6573.00)

rkf 88 51777 0.1477 0.1492 29.7202 2638.58
(46972/1734/3071) (2.563e-2) (7.2498e-3) (1.0840) (2625.58)

rsimp 59 995314 2.411 3.8286 42.8063 2713.04
(991676/3638/0) (0.3767) (0.21893) (8.6359) (2568.38)

depth is rather limited. The file output size can be large in some applications (e.g., convlv).

In Table 4, both ckp-time and crop-time do not include the processing time for the file output

portion of the checkpoint. For ckp-time, the file output portion is already written to disk during

execution; thus, it is not necessary to rewrite this portion to the checkpoint. Three variables in

a checkpoint are enough to locate this file output portion (file name, starting position and length

for each output file). We have found that checkpoint time, comparison time and restart time are

highly correlated. Since file I/O operations are the major part of checkpointing (write), checkpoint

comparison and restart (read), the overhead costs such as checkpoint time, comparison time and

restart time can be expected to be proportional to the size of the checkpoint files.

B.2. Error Detection by Checkpoint Comparison

The effectiveness of checkpoint comparison is studied for the six selected programs. To avoid

the interference of run-time error injection with checkpoint comparability, a random bit or word

23

Table 5. Detectability Experiments.

bit-wise errors word-wise errors
Program # Errors Detected # # Errors Detected #

data stack file abort Missed data stack file abort Missed
convlv 68 3 30 0 0 71 0 30 0 0
ludcmp 43 0 58 0 0 37 3 59 2 0
matrix300 101 0 - 0 0 100 0 - 1 0
nasa7 87 0 - 0 14 87 0 - 0 14

rkf 78 1 22 0 0 76 3 22 0 0
rsimp 99 0 - 2 0 98 0 - 2 1

error is injected in the previous checkpoint to model a transient error occurrence during its sub-

sequent checkpoint interval. One task is started from this erroneous checkpoint and another task

from the error-free checkpoint. The checkpoints produced by the two tasks after one checkpoint

interval are compared. A mismatch indicates a detected error. Table 5 summarizes the results for

101 injected random errors. The number of errors detected is categorized by where the error is

detected: the data, stack and the file output segments of the checkpoints. The abortion of the task

due to an error in the checkpoint can be treated as a special case of error detection by sending an

abortion signal to the voter explicitly.

The errors detected by checkpoint comparison account for the majority of injected errors that

occurred (about 98%) for all programs except nasa7. If the file output during the checkpoint

interval is not included in the checkpoint structure. 22 to 59% of the errors would not be detected

(rkf, convlv and ludcmp). Some errors were missed in our experiments. In this case, we have a

valid file output during execution and a valid checkpoint at the end; the missed errors are actually

masked off and cause no problems with respect to correct executions. This case occurs when an

error is in a dead variable and this variable is reinitialized later. A close look at the checkpoint

placement for nasa7 reveals that a. new arraY of about 1 1%X of the total checkpoint size is computed

during the checkpoint interval. The 14 missed errors were probably inserted into the new array

1.5 24

- prdicted: no cost + matdx300

1.4 ... predicted: cost * nasa7

0 convlv c rid

1.3 a ludcmp x rhimp
Relative

Exec. Time

1.2 x ..

x . *

Re"

A

0 10.05 0.1 0.

Probability of Failure, p,

Figure 10. Relative Execution Time.

space and were overwritten during the computation. In sum, the checkpoint structure provided an

effective error detection tool for the programs we studied.

B.3. Performance Results

Each program was run five times for each pf to obtain the average measures. The execution

time in our experiments is actually the progr .m response time. It includes the system, user and

blocking times. The analytical predictions for the relative execution time, number of processors,

and number of checkpoints are also included in Figures 10, 11 and 12 to compare against our

experimental results. The data were collected at night to minimize the impact of workload.

In Figure 10, the rela execution time for the programs with a moderate checkpoint size

(ludci-'p, convlv. -iasa7 and rkf) is close to the analytical zero-overhead prediction ksolid curve),

since the overheads for those prograiis is very smiall compared to their checkpoint intervals. The

relative execution time for _ie programs wit It large cl(Tckpoiiits (matrix300 and rsimp) fits well

with the analytical prediction under a cenitralized file server (the dotted curve, assuming an overhead

25

3.5

predicted: no cost + matrix300

predicted: cost * nasa7

o convlv o rid

A ludcmnp x rsim

Number of
Processors

N,

2.5-
.,'° 0

2
0 0.05 0.1 0.15

Probability of Failure, pf

Figure 11. Number of Processors.

6

predicted: no cost + matdx300

5 predict*d: cost * nasa7

o conviv o rd

4- A dcrp x rsmp
Number of

Checkpoints
Ne

3-
+

Xx

2

A

0 0.05 0.1 0.15

Probability of Failure, pf

Figure 12. Number of (heckpoints.

26

level of rsimp). This increase in execution time for large checkpoints can be explained by the fact

that matrix300 and rsimp are likely to be blocked due to the large file I/O operations during

checkpointing and comparison. In fact. the limited speed of the NFS file handling and our use

of the file server for managing checkpoints centrally resulted in a performance bottleneck. The

paging activities from the replicated processes also contribute to the increase in execution time.

The relative execution time increases significantly for high error rates due to the heavy file server

activities during checkpointing and comparison of checkpoints. This suggests that a reduction in

checkpoint size, an increase in file system speed, or other noncentralized server implementations

may improve the execution time over that of our current implementation. The Re fluctuations in

Figure 10 are caused by the uneven network workload distribution at the time of data collection

and the small sample size (5) at the low failure rates.

For the pf we considered, the number of processors used, Np, is less than the three that TMR

requires, although DMR-F-l uses two more processors momentarily during lookahead/validation

operations; Np is quite insensitive to checkpoint size (Figure 11). The number of checkpoints, Nc,

is highly sensitive to the workload and checkpoint size, as a result of the checkpoint accumulation

in the file system due to the uneven processor speed (Figure 12), especailly for the programs with

large chekpoint sizes.

V. CONCLUSIONS

In this paper, we have described a checkpoint-based recovery strategy using optimistic ex-

ecution and rollback validation for parallel and distributed systems. This approach can reduce

rollbacks without depending on specific error-correction knowledge or the standard TMR redun-

dancy Our recovery schemes (DNIR-F-I and DMIR-F-2) can achieve a nearly error-free execution

27

time with an average redundancy less than that for TMR. In addition, our analysis and experiments

have shown that checkpoint comparison time has more impact on performance degradation than

restart time. The impact of the centralized file server is also significant for the competing processes

during checkpointing, especially for the ones with large checkpoints. Checkpoint comparison was

an effective means of error detection and checkpoint validation.

REFERENCES

[1] P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice. Springer-Verlag/Wien,
1990.

[2] P. L'Ecuyer and J. Mallenfant, "Computing optimal checkpointing strategies for rollback and
recovery systems," IEEE Trans. Comput., Vol. 37, No. 4, pp. 491-496, April 1988.

[3] S. Toueg and 0. Babaoglu, "On the optimum checkpoint selection problem," SIAMJ. Comput.,
Vol. 13, pp. 630-649, Aug. 1984.

[4] C. M. Krishna, K. G. Shin, and Y.-H. Lee, "Optimization criteria for checkpoint placement,"

CA CM, Vol. 27, No. 6, No. 6, pp. 1008-1012, Oct. 1984.

[5] A. Duda, "The effects of checkpointing on program execution time," Information Processing
Letters, Vol. 16, pp. 221-229, 1983.

[6] P. Agrawal, "RAFT: A recursive algorithm for fault-tolerance," Proc. Int. Conf. Parallel Pro-
cessing, pp. 814-821, 1985.

[7] P. Agrawal and R. Agrawal, "Software implementation of a recursive fault-tolerance algorithm
on a network of computers," Proc. 13th Annual Symp. Comput. Arch., pp. 65-72, 1986.

[8] N. H. Vaidya and D. K. Pradhan, "Fault-tolerant design strategies for high reliability and
safety," Manuscript, Department of Electrical and computer Engineering, University of Mas-
sachusetts at Amherst, 1992.

[91 A. Tantawi and M. Ruschitzka, "Performance analysis of checkpointing strategies," ACM
Trans. Comput. Syst., Vol. 2, No. 2, pp. 123-144, May 1984.

[101 S. Thanwastien, R. S. Pamula, and Y. L. Varol, "Evaluation of global rollback strategies
for error recovery in concurrent processing systems," Proc. 16th Int. Symp. Fault-Tolerant
Comput., pp. 246-251, 1986.

[11] Y.-H. Lee and K. G. Shin, "Design and evaluation of a fault-tolerant multiprocessor using
hardware recovery blocks," IEEE Trans. Comput., Vol. 33, No. 2, No. 2, pp. 113-124, 1984.

[12] D. J. Taylor and J. P. Black. "A locally correctable b-tree implementation," Comput. J.,
Vol. 29. No. 3, pp. 269-276..June 1986.

28

[13] J. Long, "Checkpoint-based forward recovery using lookahead execution and rollback validation
in parallel and distributed systems." Tech. Rep. Ph.D. thesis, Center for Reliable and High-
Performance Computing, University of Illinois, Urbana, Illinois, 1992.

[14] J. M. Smith, "Implementing remote fork() with checkpoint/restart," Tech. Committee on Oper.
Syst. Newsletter, Vol. 3, No. 1, No. 1, pp. 15-19, 1989.

[15] M. Litzkow, M. Livny, and M. Mutka, "CONDOR - A hunter of idle workstations," Proc. 8th
int. Conf. Distributed Comput. Syst., 1988.

[16] C. C. Li and W. K. Fuchs, "CATCH: Compiler-assisted techniques for checkpointing," Proc.
20th Int. Symp. Fault-Tolerant Comput., pp. 74-81, 1990.

[17] D. J. Taylor and M. L. Wright. "Backward error recovery in a unix environment," Proc. 16th
Int. Symp. Fault-Tolerant Comput., pp. 118-123, 1986.

[18] SPEC, SPEC Newsletter. Fremont, CA: SPEC, Feb. 1989.

APPENDIX: ANALYTICAL DERIVATIONS

Due to space limitation, we present the analysis only for DMR-F-1 in this appendix. The

analysis for DMR-F-2, DMR-B-1, DMR-B-2 and TMR-F is similar [13]. If an error occurs, DMR-

F-1 behaves differently in the last checkpoint interval. Since no lookahead execution is possible

for this interval, a rollback is always required during recovery. An n-session computation consists

of n-1 lookaheadable sessions followed by a rollbackable session. Duda has an excellent analysis

for the last rollbackable session [5]. Besides, the performance degradation contribution of the last

rollbackable session is proportional to 1. while that of the n-1 lookaheadable sessions is to -
n

The approximation of an n-session computation with an n lookaheadable sessions is adequate even

for a moderate n. Therefore, our analysis focuses on the situation of an n lookaheadable sessions.

Let T, be the expected execution time for an n-session (lookaheadable) computation, and Let

Pl and p, be the probabilities of a successful lookahead and rollback in DMR-F-1, respectively.

Thus, the expected execution time is then.

29

A I t+k 4l- I, 1 -P

T = A + tk + tG +2.5tt + Tl, Pt

2A + 2tk + 2t, + 3tt + Tn, p,

or,

T,= (A+tk)+ (,.+2.5t)4- (2A+2t +2t,+3tt)+Tn..l.

Solving this equation with the initial condition. T = 0, we have,

T, = T n(+ tk) + nPI (tr + 2.5tt) + npr (2z + 2tk + 2tr + 3tt),
IlPr 1 -Pr

Te 2pr +pt + 2 PT t, 2.5p + 3pr tt

TO 1 -pr 1 - P + tk 1 - Pr A + tk

The number of processors used is two for the normal execution. It is five during recovery for

transient faults and four for permanent faults, since a faulty processor is used in the latter case.

In this paper, we analyse only the situation of transient faults, since this gives the worst situation.

Let I and r denote ' and '; respectively. Therefore,1 -p, 1-Pr

TNp(t)dt = 2 (n - 1)(. + tk) + 21tt + 51(A + tk + tr + 1.5tt) +

+2r(A + tk + tr + tj) + 5r(A + tk + tG + 2tt)

= 2T, + 3To P + P ' + 311tr PI + Pr' + 3Ut, 1.5pt + 2pr

Pt + Pr PI + Pr tr 1.5pt + 2pr tt
Np= 2+3 t+r +3 7)+) T +31512T

(1 - pr)Re (1-p)ReA+tk (1-Pr)R A+tk

There is one (the committed) checkpoint during the normal execution run. Two additional

(uncommitted) checkpoints are present during a lookahead/validation operation. At the end of the

A for the rollback validation, there are eight checkpoints, one committed and seven uncommitted

(one for the validation process, two for the normal process pair and four for the lookahead processes).

Thus,

30

y T N,(t)dt = n(A + tk) + 31(t, + tt) + Si(1.51t) +

+r(-A + tk + tr) + 3r(A + tk + tr + tt) + 8 r(2tt)

T,+2T + P + 2nt, P1 + Pr + 2ntt 6.25p, + 8Pr
- Pr 1 - p 1 - Pr

1+2 P' + Pr+2 P1 + Pr tr 6.25pl + 8Pr tt
(1Pr)Re (1-p)RA+tk + (1-Pr)Re A+tk

If a centralized file server serializes the file accesses, both the restart (tr) and checkpoint times

(tk) will be increased because of the serialized file accesses generated by checkpointing (write) and

restart (read). According to our assumption in Section III, the restart time will be threefold since

three processes read the last committed checkpoint file at the same time (the rollback validation and

the two lookahead processes). The checkpoint time is 2 tk for the normal pair of task replications

and 5 tk for the lookahead period (four for the lookahead and one for the rollback validation). Thus,

the relative execution time with a centralized file server can be shown as

R,(fs)= + 2pr p + 5/3P) 3t,. 2 .5pi + 3 p, tt Pt + Pr 3 tk

Pr 1 - p, A + 2 tk - Pr A + 2t k 1 - Pr 'A + 2 tk

Following a similar analysis, we can obtain the formulas in Tables 2 and :3.

LIST OF TABLES

1 Five Schemes Compared ... 8

2 Analytical Evaluation Summary: DMR-F-1 9

3 Analytical Evaluation Summary: DMR-F-2. 10

4 Overhead Measurements 22

5 Detectability Experiments. 23

LIST OF FIGURES

1 Lookahead Execution and Rollback Validation 3

2 Comparison: Relative Execution Time 12

3 Comparison: Number of Processors 12

4 Comparison: Number of Checkpoints 13

5 Overhead Impact on Execution Time 15

6 Overhead Impact on Number of Processors 15

7 Overhead Impact on Number of Checkpoints 16

8 Impact of a Central File Server on Execution Time 17

9 Optimal Checkpoint Placement 18

10 Relative Execution Time 24

11 Number of Processors .. 25

12 Number of Checkpoints ... 25

